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1 Introduction

What kind of human activities do theories (theoretical computer science) and
practices (industrial software development) on software most resemble? Hoare
and He (1998) adopted the following viewpoint; the relationship between the-
oretical computer science and real-world software development corresponds to
that of physical sciences and classical �elds of engineering, e.g. mechanical en-
gineering or aero-dynamical engineering. From this viewpoint, they successfully
showed an approach towards a uni�ed theory intended for industrial program-
ming.

Here, we take a distinct viewpoint because of the di�erence between underly-
ing logics of each scienti�c �eld, i.e. physical sciences and theoretical computer
science. The underlying logic of physical sciences is inductive in principle, and
this inductive nature of physical theories is inevitable since the physical world
is given to us independent of ourselves. In this case, we must formulate prop-
erties of the physical world and then develop physical theories via comparisons
between theoretical predictions and experimental results.

On the other hand, a computer program is just an implementation of some
computable function which is de�ned in a deductive formal system. Such de-
ductive underlying logic governing software is quite an important character of
this �eld, hence it must be taken into account when developing software. We
therefore take an approach di�erent from that of Hoare and He.

Our approach is this: the relationship between theories and practices on soft-
ware corresponds to that of mathematical logic and living mathematics (which
we call `ordinary mathematics ') done by working mathematicians (in the sense
of the title of Mac Lane (1971)) as their daily work. We therefore claim that soft-
ware engineers should develop their products just like working mathematicians
develop mathematics; i.e., software should be developed really mathematically.

Now most formal methods claim to be `mathematical'; but are they really
mathematical? Are they truly desirable approach to mathematical software de-
velopment? Such a question, whether one thing is `mathematical' or not, may
seem very subjective and a matter of taste. We, however, claim that this question
can be answered objectively as far as from the viewpoint of `mathematicalness'
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as stated above, i.e. to de�ne `to be mathematical' as cultural properties com-
monly kept by working mathematicians. At this point, we only point out that
such working mathematicians' culture has been successfully stable for su�ciently
long time (at least from Hilbert's proposal of the axiomatism in the early of this
century) and, hence, that our de�nition of mathematicalness is not arbitrary.

According to the above de�nition of mathematicalness, we reconsider the
basic question, whether formal methods are mathematical or not, and will answer
\NO", and explain why formal methods are not actually mathematical from the
viewpoint of working mathematicians.

To answer this question, we will analyze activities of working mathematicians
and will reveal several `ideas' (actually some kind of misconceptions we think),
which unfortunately prevent formal methods from becoming widely accepted in
the �eld of industrial software even though such ideas are commonly considered
to be useful or even strong points of formal methods. In Section 2, we will discuss
the di�erences between `to be mathematical' from the viewpoint of working
mathematicians and `to be logical' in the sense of mathematical logic on which
formal methods are based. In Section 3, we will analyze the di�erences between
mathematicians' proofs and formal proofs of formal methods.

After discussing those misconceptions, in Section 4, we will show the similar-
ity between software and mathematics; i.e., the correspondence between macro
structures found in software development (e.g., architectural patterns, design
patterns, etc.) and macro structures found in mathematical arguments. Then
we propose a novel concept of mathematical software engineering, which we call
`Precision Software Engineering', on the basis of this correspondence between
software and mathematics. Finally, we will point out remaining themes nec-
essary for realizing this concept as an industrially applicable discipline so that
future software engineering will become truly mathematical and produce reliable
software.

2 Is `Logicalness' () `Mathematicalness'?

In this section, we analyze the di�erence in the viewpoints of working mathe-
maticians and mathematical logicians, and we evaluate whether formal methods
are actually mathematical or not.

Each formal method is based on some formal system such as axiomatic set
theory, a system of modal or temporal logics, etc. These formal systems are
originated from mathematical logic or theoretical computer science, which is
applied mathematical logic. Hence, formal methods are (mathematico-) logical.
It seems to us that, on the basis of this fact, most formal methods claim to be
`mathematical'.

It is, however, not necessarily true that a thing is mathematical if and only if
it is logical. One direction (mathematicalness implies logicalness) is clearly true.
This is because mathematics is a deductive language; i.e., all the notions and the
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statements in mathematics are formalizable in a logical system, say axiomatic
set theory.

The other direction (mathematico-logicalness implies mathematicalness) is,
however, much more problematic. This implication would have been trivially true
if we had taken the mathematical logicians' viewpoint of mathematics. But as we
stated in x1, we adopted the working mathematicians' viewpoint as the de�nition
of `to be mathematical'. Hence, we must carefully analyze what `mathematical'
means in the working mathematicians' community.

There are many criticisms against mathematical logic. These are given by
working mathematicians (e.g., Jean Dieudonn�e (1982)). These criticisms are
mainly due to working mathematicians' misunderstandings about and prejudices
against mathematical logic. Mathematical logic is clearly an important part of
our culture just like mathematics is.

We, however, think that these criticisms must be reconsidered more seri-
ously so that we can learn some lessons from them by carefully analyzing why
working mathematicians display such hostility against mathematical logic. Such
criticisms show the following facts: (1) most working mathematicians do not
regard mathematical logic as the logic for ordinary mathematics ; (2) mathemat-
ics analyzed from the mathematico-logical viewpoint is irrelevant to ordinary
mathematics which working mathematicians love and develop.

Why does such an unfortunate gap between mathematical logicians and work-
ing mathematicians occur? This gap is due to the nature of mathematical logic;
i.e., its complete reductionistic nature. For example, consider the following set
of formulae:

8x: x�1 � x = e;

8x: e � x = x;

8x; y; z: x � (y � z) = (x � y) � z:

These are very familiar axioms of groups and most working mathematicians
consider this mathematical structure very important.

From the mathematico-logical viewpoint, however, these formulae are no
more than sentences of �rst-order equational logic with one constant symbol
and two function symbols (one is unary, the other binary). That is, mathemati-
cal logic cannot explain nor even pay any attention to the importance of these
axioms in ordinary mathematics.

Just like this example of the group structure, mathematical logic reduces
any mathematical structures to formulae in a formal system and also reduces
proof techniques based on such structures to combinations of primitive inference
rules of this formal system by discarding their pragmatic signi�cance for working
mathematicians. This is because the main purpose of mathematical logic is to
analyze logical but not mathematical structures of mathematical arguments.

On the other hand, working mathematicians consider mathematical struc-
tures very useful and important, and also regard that proof techniques based on
such structures indispensable in developing ordinary mathematics as their daily
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work (cf. e.g., Mac Lane (1986)). E.g., in most books on mathematics, the group
structure is frequently used in developing mathematical theories.

In other words, mathematical logic, especially proof theory, reduces all the
mathematical contents into meaningless syntax in a formal system and then
analyzes such syntactic objects to obtain some information, say logical com-
plexities of mathematical notions. We call such a nature of mathematical logic
reductionistic. From such a viewpoint, all intuition (or semantics in a very vague
sense) on mathematical objects held by working mathematicians are completely
abandoned. Every mathematical theory is reduced to a collection of purely syn-
tactic phrases and the liveness of such a theory on the working mathematicians'
Platonic world is completely lost.

Criticisms to mathematical logic raised by working mathematicians can be
summarized like this: \mathematical logic neither helps our imagination in the
living mathematical world nor gives any hints for proving theorems about our
mathematical world; the logical structure shown by mathematical logic has hardly
any relation to our `logic' of living ordinary mathematics."

Moreover, mathematical logicians do their daily work (i.e., research on math-
ematical logic) not mathematico-logically but mathematically. That is, they live
in their own world of imaginations.

Hence, mathematical logicians themselves are actually working mathemati-
cians! They are working mathematicians in �elds di�erent from those of ordinary
mathematics. But there is an essential di�erence between mathematical logicians
and ordinary working mathematicians. Their viewpoints on ordinary mathemat-
ics are quite di�erent. Mathematical logicians observe ordinary mathematics
from the meta-level (in the sense of metamathematics) so view it syntactically,
while working mathematicians live in the world of this ordinary mathematics:
i.e., ordinary mathematics is at the object-level for them; hence, they view it
semantically.

Software formalists (we hereafter denote `researchers on formal veri�cation'
by this term) often claim that one of strong points of formal methods is to allow
software engineers to reason the correctness of software purely syntactically. Such
a claim clearly shows that software formalists view software development from
the meta-level. This viewpoint is quite similar to the mathematical logicians'
one on ordinary mathematics but is never the working mathematicians' one on
it nor the logicians' one on logic itself.

From these observations, we answer \NO" to the basic question whether
formal methods are mathematical. Formal methods force their users to work in a
very strictly de�ned formal syntax just like mathematical logic analyzes ordinary
mathematics. Working mathematicians, on the other hand, think semantically
and do their daily work in a natural language in a very rigorous manner with
minimal use of formal syntax (i.e., mathematical formulae) only when using such
formalism is more compact and clearer to express their mathematical ideas than
expressing such ideas in a natural language.
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Any formal syntax has a strong tendency to force its users to work syntacti-
cally rather than semantically, even though syntactical manipulations are much
more ine�cient than working with semantical imaginations. In the next section,
we will observe the fact that mathematicians' productivity is unbelievablly high
when we compare it to that of software engineers. One of keys of their high
productivity is that they are thinking semantically rather than syntactically
about mathematical objects. In the next section, we will reveal the secret how
mathematicians attain such high productivity.

3 Are Formal Proofs Imperative?

NOTICE: Hereafter, the term `mathematics' will be used in a broader sense
than in x2; i.e., as the generic name for all the deductive sciences including
mathematical logic and theoretical computer science as well as (ordinary) math-
ematics. The term `(working) mathematicians' therefore denotes researchers in
all such �elds. When we use these terms in the narrower sense as in x2, we a�x
an adjective `ordinary'.

Many formal methods are supported by (semi-)automatic provers or proof-
checkers. Users of such methods can verify the consistency of their speci�cations
and the correctness of programs with respect to speci�cations completely for-
mally supported by such provers/proof-checkers running on a computer. Hence,
those formal methods claim that such possibility of formal veri�cations is one
of strong points of themselves. Is this possibility really a strong point? Are such
formal veri�cations compatible with reasonable productivity of software?

Now we estimate working mathematicians' productivity and compare it with
the productivity of software engineers. It is very di�cult to estimate the amount
of semantical contents in a mathematical paper and almost impossible to com-
pare such an amount with the amount of a program. It is, however, possible to
estimate the amount of syntactical objects denoting such semantical contents. In
estimating such syntactical amount, the next example will give some insights.
Let X be a set, v and � be partial orders on X, and � and ' be equivalence
relations induced by these partial orders, respectively. Suppose x v y ) x � y

for all x; y 2 X. Then, it is trivial that x � y ) x ' y for all x; y 2 X. But if
we want to prove this trivial theorem formally (in, say Gentzen's NK) we need
more than 10 steps. It is well known from constructive programming that every
formal proof step exactly corresponds to a step of a program.

We can therefore roughly estimate the amount of a program-like formal object
denoting the contents in a mathematical paper by multiplying its number of lines
by 10 or more (if proofs of that paper contain large `gaps' which novices cannot
�ll in, then 1,000 or even more would be appropriate) to obtain the corresponding
LOC (lines of code) as software. This means a 20-page paper (it is not so long as
a mathematical paper) with 30 lines per page corresponds to at least 6,000 LOC
as a program. In fact, this estimation may be too small since most mathematical
papers are very technical and contain many `gaps' which only professionals can
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�ll in, so we should estimate the amount of contents of such a paper as at least
60,000 LOC (here, still a rather small scaling factor 100 is used). Even if a
mathematician produces only one paper per year, his productivity about the
mathematical contents corresponds to 5,000 LOC per month!

This would be surprising productivity if he were a software engineer. At �rst
sight, this comparison may seem to be unfair, but it is not so unfair. Suppose
there were a formal mathematician who do mathematics completely formally
(perhaps using some formal-proof development tools). Note that his aim is not
to record existing mathematical theories formally but to develop his own novel
mathematical theory just like usual mathematicians do. Then, such a formal
mathematician had to have his productivity as high as the above LOC value in
order that he could write a paper (per year) containing equivalent mathematical
contents to the above (non-formal but rigorous) mathematician's one. We should
aware that activities of such formal mathematicians are almost the same as those
of software engineers. In fact, they can be said `programmers in mathematics '.

The fact that the above comparison seems unfair shows an important point.
That is, software engineers have been handicapped already compared with math-
ematicians. Software engineers' handicap is that their �nal products must be
completely formal, computer programs. Most of software engineers do not think
formally at the current state-of-art, but their productivity has been signi�cantly
reduced already in order to produce formal objects. In the case of mathematics,
if there were formal mathematicians, they would be handicapped, too. Therefore,
the productivity 5,000 LOC per month required for such formal mathematicians
sounds unrealistic, and such unreality is solely due to their way of working, i.e.
syntactical manipulation instead of semantical imagination, because mathemati-
cal (i.e., semantical) contents of formal mathematicians' products are completely
the same as those of ordinary mathematicians' ones.

To understand such formal mathematicians' handicaps, we should remind
that in mathematical papers there are many `gaps' which only very trained peo-
ple can �ll in. In fact, mathematicians attain their surprisingly high productiv-
ity mainly because they do not prove their theorems formally. They leave some
`gaps' in proofs un�lled, and such `gaps' are actually not true gaps (i.e., aws
of proofs). They are trivial for intended readers of such papers. Mathematicians
do not want to spend their time �lling in such `trivial gaps' completely.

Formal proofs (say, of the correctness of software) do not allow the smallest
`gaps', even if such `gaps' are actually trivial for software engineers. Proving
formally decreases productivity of software engineers from that with semantical
thinking to the level of syntactical thinking; i.e., programming. The secret of
mathematicians' surprising productivity is thus: they limit use of formal lan-
guages in describing and proving mathematical properties as little as possible
and then keep their productive semantical imagination as much as possible.

Note that no mathematical logicians, theoretical computer scientists, nor soft-
ware formalists have ever written a paper in which their theorems are proved
formally. That is, any researchers on formal systems do their daily work math-
ematically (in the sense of x2) but NEVER formally.
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If software engineers are requested to prove the correctness of their programs
complete formally, then they will be doubly handicapped. They must not only
produce completely formal products (programs) but also work with such prod-
ucts completely formally. Then software engineers' performance in provings will
surely be decreased from the level of mathematicians' performance in provings
to that of formal mathematicians' one.

Software engineers' mission is to produce software with reasonable reliability
and performance within a given budget. For software engineers, activities such as
designing software and proving its correctness are their daily work; these activi-
ties just correspond to stating theorems about mathematical objects and proving
them for working mathematicians, or stating metatheorems about properties of
formal systems and proving such metatheorems for software formalists. It is quite
unfair to request that only software engineers must prove the correctness of their
products formally. Though it is true that the main part of a software engineer's
product is a formal object (i.e., a computer program), such a formal artefact
is produced in the very �nal step of their daily work. A correctness proof of a
program is only a way to guarantee the quality of their product. For software
engineers, a correctness proof is not their ends but a mean of quality assurance.

The following fact is empirically well known among working mathematicians:
in a seminar, if a theorem is stated and a sketch of its proof is shown and also
if most of the participants in that seminar think that it is correct, then the
statement of the theorem itself is true in most cases even if the original proof
sketch may contain serious aws when a proof is written in detail. In verifying
the correctness of software, `a theorem' above corresponds to the correctness. For
software engineers, the correctness of software is very important but achieving
absolutely correct correctness proofs lies outside their principal aim.

Most formal veri�cations are methods that directly guarantee the correct-
ness of correctness proofs and then inform us of the correctness of software.
As mentioned above, this approach is outside software engineers' principal aim.
To remedy this problem, the notion of `veri�cation' in the Cleanroom Method,
Linger et al. (1979), gives a good hint. In this method, `correctness proofs' are
planned to be done rigorously (but never formally) as veri�cation-reviews by a
small design team consisting of several engineers. This approach to correctness
proofs is quite similar to checking proof sketches by participants in a seminar
of working mathematicians. Hence, the notion of and the approach to veri�ca-
tion in the Cleanroom Method, in its spirit, quite resemble the daily activities
of working mathematicians. This method has been successfully applied to real
projects. Overall productivity is reported to be the same or improved compared
with that in conventional (without any correctness proofs) developments even
though correctness are proved in this method, cf. Gibson (1997).

The Cleanroom Method veri�cation is limited to the scale of individual pro-
cedure and cannot be applied to larger scales. In the next section, keeping the
spirit of this method (i.e., focusing the correctness of software but never that of
correctness proofs), we will show an approach to mathematical software devel-
opment by comparing macro structures in software and mathematics.



8 Hidetaka Kondoh

4 The Software-Mathematics Structural Correspondence

In this section, we analyze the structural resemblance between software and
mathematics by focusing their macro structures.

Constructive Programming is an approach to systematically derive programs
from their speci�cations written in some version of intuitionistic (i.e., construc-
tive) logics, say a higher-order intuitionistic type theory, instead of the usual clas-
sical (i.e., two-valued) logic. This approach is based on the following de Bruijn-
Curry-Howard correspondence between programming and logic; cf. Nordstr�om
et al. (1990), Luo (1994), and Hindley (1997):

Table 1. The de Bruijn-Curry-Howard Correspondence

Programming Logic

Speci�cation Proposition

Program Proof

The problem of the constructive programming approach is its too microscopic
and reductionistic viewpoint. There are many textbook on the same mathemat-
ical theme, but we say that some are well-written and some are poor even if
later ones had no gaps in proofs and no typos. If these books are considered
formally then they are equivalent, since each book gives the same main theorem
and shows its proof. The di�erence between such well-written books and poor
ones lies in the style of their presentation.

Well-written books show intuitively clear and natural de�nitions capturing
essential notions adequately, provide many useful lemmata, and prove the main
theorem in a very beautiful and reusable way. Just like this, a program at the
programming-in-larges level, which is so large that it needs software engineering,
is expected to have a beautiful internal structure consisting of understandable
and stable-against-modi�cation components in order to decrease e�orts in its
maintenance.

The constructive programming approach has another problem, the di�culty
of formal proofs as we discussed in x3. Therefore, we must admit that this ap-
proach is quite di�cult to be applied to industrial software development.

We, however, think that this constructive programming approach has its
own interests; i.e., this approach gives hints to consider an analogy between pro-
gramming and mathematics/logic. In the constructive programming approach,
this analogy is quite formal but stays at the programming-in-smalls level. If
we relax this analogy to be informal and extend it to a more macro scale, the
programming-in-larges level, then we can �nd a correspondence between struc-
tures found in software development and those used in mathematical activities
at various levels of granularity. This correspondence is shown in Table 2. We
now analyze this Software-Mathematics Structural Correspondence more care-
fully. Note that the base of our analysis is the correspondence shown in Table 1.
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Table 2. The Structural Correspondence between Software and Mathematics

Software Development Mathematical Activity

Basic Control Structure Elementary Proof Step
(Repetitive Loop, Conditional, ... etc.) (Mathematical Induction, Case Analysis, ... etc.)

Idiom Proof Technique
(Useful Combination of Control Structures ) (Conventional Technique for Fragmental Proof)

Abstract Data Type Theory on a Mathematical Notion
(Collection of Operations on Common Data) (Collection of Lemmata on a Mathematical Notion)

Design Pattern Proof Tactics
(Specific Combination of (Possible) Classes (Specific Combination of Subgoals (Lemmata)
and Specific use of their Interdependencies) and Specific use of their Interdependencies)

Architectural Pattern Theory Strategy
(Specific Combination of (Collection of Basic Definitions
Specification of Components) and the Main Theorem)

Software System Mathematical Theory
(Structure formed by Definitions,
Theorems & Proofs)

Domain Mathematical Field
(Basic Framework for Mathematical Thinking
with Common Vocabulary)

� Basic Constrol Structure vs. Elementary Proof Step

The lowest level of the correspondence, between a basic control structure and
an elementary proof step, is essentially formal in the sense of the constructive
programming approach. E.g., a sequential composition corresponds to the cut
rule in logic, a conditional corresponds to the disjunction elimination in logic, and
a terminating repetition corresponds to an induction on a well-founded ordering.

� Idiom vs. Proof Technique

An idiom in programming is a speci�c pattern of combination of basic con-
trol structures. As stated above, control structures correspond to elementary
proof steps. Hence, an idiom corresponds to a speci�c pattern of combination
of elementary proof steps in mathematics. Such a pattern is a proof technique;
e.g., Fermat's method of `in�nite descent', Reid (1988), (often used in elemen-
tary number theory) is a speci�c combination of a reductio ad absurdum and a
mathematical induction.

� Abstract Data Type vs. Theory on a Mathematical Notion

An abstract data type (or a class in the object-oriented paradigm) is a collec-
tion of operations acting on a common data to be encapsulated. As we have seen
in Table 1, a speci�cation of an operation corresponds to a proposition. Hence,
a speci�cation of an abstract data type (or a class) corresponds to a (usually
miniature) theory on a speci�c mathematical notion and an implementation of
an abstract data type (or a class) is in correspondence with a proof of such a
theory. Most typical example of such a theory on a mathematical notion is group
theory (though it is not miniature). This correspondence is well-known and is a
basis for the algebraic approach to abstract data types, Ehrig and Mahr (1985).

� Design Pattern vs. Proof Tactics

A design pattern is a speci�c combination of classes and speci�c dependen-
cies (inheritance relations) among them. As shown above, classes correspond to
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theories of mathematical notions. In mathematics, a proof tactics is a collection
of conventional knowledge on matters such as what lemmata should be stated in
order to prove the desired theorem and how to use dependencies between theo-
rems. In many cases in mathematical theories, those lemmata form a miniature
theory on an auxiliary mathematical notion which is used to develop the proof
of an upper-level proposition. Hence, a design pattern corresponds to a proof
tactics in mathematics.

� Software System vs. Mathematical Theory

Before considering the relationship between architectural patterns and theory
strategies, we analyze the next pair (i.e., software systems and mathematical
theories) since each of the former pair is a skeleton of corresponding one in
the latter pair; hence, the discussion on the second pair is expected to be more
intuitive than that on the �rst one.

A software system is developed according to its speci�cation, has some in-
terface with its environment, and is implemented as a collection of various com-
ponents interacting one another; each component has its own speci�cation and
interfaces to other components. At the side of mathematics, by a mathematical
theory, we mean the contents of a mathematical book or a paper. It consists of
a collection of de�nitions and theorems (some of them are main theorems, for
which the book or the paper is written) and their proofs. Of course, in order
to show main theorems, many auxiliary de�nitions, lemmata and their proofs
are necessary. Such organic collection of these mathematical items form a math-
ematical theory. This just corresponds to a non-trivial programming-in-larges
software system as follows:

� the (functional) speci�cation of a whole software system corresponds to state-
ments of main theorems as a whole (by taking their conjunction);

� the speci�cation of a component corresponds to the statement of a lemma
which is used to prove main theorems;

� the implementation of this component corresponds to the proof of this
lemma;

� a component, which is provided as a library and is outside of the development
project of the system, corresponds to an `external' lemma whose statement
is borrowed from some reference and is used without a proof;

� (de�nitions of) mathematical notions for describing the statement of main
theorems corresponds to (de�nitions of) abstract data types used to give the
functional speci�cation of the software system;

� (de�nitions of) auxiliary notions used to describe statements of lemmata
are in correspondence with (de�nitions of) abstract data types for interfaces
among components.

Note that a mathematical monograph contains quite a lot of materials;
e.g., Barendregt's \The Lambda Calculus" (1981) has the contents as much as
ca. 400,000 LOC (> 600 pages � 30 lines/page � 20 (as a scaling factor); in
this case, the author estimates the scaling factor to be a very small value 20,
since that book hardly contains any `gaps' in proofs), which is large enough as
non-trivial programming-in-larges software.
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� Architectural Pattern vs. Theory Strategy

An architectural pattern is a speci�c pattern of a collection of speci�cations
of components, interfaces among these components and an interface with an
external environment for the system which is expected to build with this ar-
chitectural pattern. Each component is given a partial speci�cation; i.e., this
speci�cation is so weak that it cannot uniquely de�ne the external function of
the component. An architectural pattern therefore is a template for constructing
software systems.

Now consider the mathematical side. A strategy for developing a mathemati-
cal theory is characterized as its starting point (basic de�nitions), its pattern of
the goal (i.e., the pattern of main theorem(s)), and patterns of several important
auxiliary lemmata. For example, in �-calculus or rewriting systems alike, if we
want to show the Church-Rosser Theorem (i.e., the congruence of reductions),
then we have several choices. One of them is to show it via the Hindley-Rosen
Diamond Lemma. Another is to use parallel reduction. Each of them gives a
strategy for developing the reduction theory of such a calculus. In this example,
the goal, the concrete statement of the Church-Rosser Theorem, depends on each
reduction system; hence, the Church-Rosser Theorem is the name of a family
of similar statements. Just like this, each of the Hindley-Rosen Lemma and the
notion of parallel reduction is a family of similar statements and that of similar
notions, respectively. As we have seen in this example, a theory strategy is a
template to build many concrete mathematical theories; in this case, each strat-
egy (i.e., via the Hindley-Rosen Lemma or via parallel reduction) is a template
to construct a concrete rewriting theory of various rewriting systems. As we have
shown the correspondence between software systems and mathematical theories,
we can conclude that architectural patterns and theory strategies corresponds
to each other.

� Domain vs. Mathematical Field

A domain has its own basic vocabulary to describe problems and each term
in such vocabulary carries its own speci�c meaning and restrictions for its use.
Similarly, a mathematical �eld de�nes a basic framework and a common vo-
cabulary for mathematical thinking. For example, it is often said by working
mathematicians that algebraists think with the equality, =, while analysts use
the inequality, �. This means that = is a basic notion in algebra, but it is not
the case in analysis. In analysis, = is a compound notion shown by a pair of two
�'s (x = y from x � y and y � x) by taking limits of appropriate sequences.
To show another example, let's see what the �eld of �-calculus is. When we
read Barendregt's encyclopedic monograph (1981), it tells us that we should
investigate such a calculus on four aspects: i.e., conversion relations, reduction
relations, equational theories, and models. These are the most basic vocabulary
in �-calculus and give the most basic thinking-framework in developing similar
various calculi.

Di�erences between Software Engineers and WorkingMathematicians

We have seen that macro structures known in software engineering well corre-
spond to macro structures in mathematics. There is, however, an essential dif-
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ference between software engineering and mathematics in handling such macro
structures. Mathematicians are very rigorous in using their mathematical macro
structures. They very carefully analyze limitations of usage of these structures:
e.g., under what condition a lemma can be used, what additional conditions are
needed for a mathematical construction to preserve a desirable property, etc.
Software engineers treat their macro structures such as architectural patterns,
Buschmann et al. (1996), and design patterns, Gamma et al. (1995), in very
intuitive and empirical manners. They have found such reusable structures but
have never analyzed their rigorous properties.

A design pattern can be said a structure with several holes, each of which
is expected to be �lled by a class or an object. Current works on design pat-
terns, however, do not analyze necessary properties for such holes: e.g., what a
class invariant is necessary for a class to �ll a speci�c hole of the pattern; what
preconditions/postconditions are expected for a speci�c method supported by
a hole-�lling class. In the case of an architectural pattern, it is a macro struc-
ture with holes for large components and interactions among them. We should
therefore know rigorously about necessary properties of each component to �ll
each hole. We also need to know about under what conditions additional prop-
erties of these components are preserved all over the architecture. For example,
what additional conditions are necessary to extend the deadlock-freeness of each
component to this architecture as a whole. Without knowledge about properties
of these macro structures, software engineers either cannot safely reuse them in
building reliable software systems or must prove the correctness of the software
from scratch every time they use macro structures.

There are several works on formal descriptions of such software macro struc-
tures. Most of them, however, are at the level of description. They are not at the
level of analysis of their properties. Careful analysis and accumulating such rig-
orous properties are essential and far more important than describing structures
formally, because if we knew their properties rigorously, we could correctly use
those macro structures in constructing software systems with high reliability and
could prove its correctness e�ciently on the basis of such rigorous properties.

5 Towards Precision Software Engineering

So far, we have discussed how we can make software engineering truly mathemat-
ical. The key idea is the use of macro structures such as architectural patterns
and design patters with their own rigorous theories.

In other words, software engineering must not only describe the structure
itself (with, say, UML or some kind of architecture description languages) but
also develop a rigorous miniature theory (mini-theory for short) for each software
macro structure, which has holes to be �lled (instantiated) by some components.
Each such mini-theory must clarify rigorous properties of each structure: e.g.,
invariants of the structure, relationships among invariants of components to �ll
holes of that structure, properties preserved by that structure and additional
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condition (if necessary) for this preservation. Such properties on a macro struc-
ture form an ad hoc (in the sense of mathematical logic) but useful mini-theory
(`theory' exactly in the sense of mathematical theories) on this structure. These
mini-theories can be used in proving correctness of software systems built up with
those structures. Then software engineers can safely use such macro structures in
building reliable software and rigorously proving its correctness e�ciently. This
situation is completely parallel to the situation in mathematics: i.e., working
mathematicians �rst empirically found useful mathematical structures such as
groups, rings, and topological spaces; then, for such structures, mathematicians
developed ad hoc but rich theories such as group theory, general topology, etc.;
and now, they can e�ectively use such theories on mathematical structures in
developing their own mathematical theories by proving their own theorems e�-
ciently on the basis of such theories in order to output their products; namely,
mathematical papers and books.

We call such an truly mathematical discipline of software engineering as
Precision Software Engineering. This discipline must consists of ad hoc mini-
theories on empirically useful software macro structures just like mathematics
consists of theories on mathematical structures like groups, rings, etc. which
are ad hoc from the mathematico-logical viewpoint. There are much materials,
namely generic meta-theories such as many variations of programming logics
and calculi for concurrency, provided by theoretical computer science (including
researches on formal methods), which are applicable to build up such mini-
theories for Precision Software Engineering.

The most important di�erence between Precision Software Engineering and
formal methods is the di�erence in viewpoints and not that of meta-theories
on which they are based. Most formal methods aim to formally describe soft-
ware with a language (as a concretization of some generic meta-theories) and to
prove the correctness of software formally. On the other hand, Precision Soft-
ware Engineering stresses to rigorously analyze software macro structures and
to construct their own logically ad hoc (but logically consistent, of course) and
practically useful mini-theories on reusable such structures on the basis of generic
meta-theories. This approach to software engineering gives a good interface be-
tween software engineering and theoretical computer science. That is, the latter
provides generic meta-theories on the nature of computation, while the former
develops ad hoc mini-theories on software macro structures and methodologies
to work with such mini-theories founded on generic meta-theories.

Precision Software Engineering is not already-established discipline, but there
are several interesting works which share the spirit of Precision Software En-
gineering. The most signi�cant and already practical one is the Cleanroom
Method, which captured the essential spirit of mathematical proof and applied it
correctness proofs of programs, cf. Linger et al. (1979). Bertrand Meyer's Design
by Contract is also a practical approach to program correctness on the basis of
an interesting analogy that the precondition and the postcondition of a proce-
dure can be seen as the contract of the provider and users of the procedure, and
this approach covers the object-oriented paradigm, cf. Meyer (1997).
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Another very ambitious and quite interesting works on more macro-scale
structures is Dines Bj�rner's Domain Theory (1997 and 1998), where Bj�rner
tries to develop theories on various application domains of software by describing
each application domain by a formal speci�cation language RSL to standardize
the vocabulary of the domain, then analyzing properties of each domain very
rigorously (in fact, formally) and �nally obtaining its properties (invariants of the
application domain and many useful lemmata) in the form of formal sentences
in RSL.

Yet another interesting rigourous approach on macro-scale structures is
Bj�rner et al. (1997), which characterizes Michael Jackson's (originally not so
rigourous) Problem Frames (1995) in software development; and the notion of
the Problem Frame, in turn, was inspired from G. Polya's classical work(1957)
on the classi�cation of mathematical problems for solving them.

Also interesting works are on formal de�nitions of practically useful de-
sign/modeling languages like UML, so-called Precise Semantics of Software Mod-
eling Techniques: e.g., Broy et al. (1998). If UML have such formal foundations
and properties and limitations of various design transformations on that lan-
guages are analyzed rigorously, then working software engineers can e�ectively
work with UML in a very rigorous and safe manner.

There have beenmany proposals to make programmingmathematical. Among
others, Hoare (1986) clearly showed the correspondence between programming
and mathematics. Those proposals are, however, at the programming level; i.e.,
within the programming-in-smalls scope and actually from the mathematico-
logical viewpoint in stead of working mathematicians' one. The novelty of our
proposal is its scope. Our approach o�ers a way for more upper design processes
in software development to become mathematical on the basis of the Software-
Mathematics Correspondence shown in Table 2, which we have found.

As a (mainly academic) research �eld, Precision Software Engineering may
also be called Abstract Software Engineering just in the sense of abstract alge-
bra. In fact, the principal aim of Precision Software Engineering is to establish
abstract (mini-)theories of empirically useful software macro structures indepen-
dent from how those structures are concretely implemented (in C, Java, etc.).
This is quite analogous how abstract algebra was born. For example, groups were
originally found by Galois as very concrete objects; i.e., substitutions of solutions
of algebraic equations. Later, Noether and other mathematicians abstracted and
puri�ed the notion of groups and established modern abstract group theory.
Other branches of abstract algebra were also emerged by abstracting originally
very concrete mathematical objects (i.e., various number systems like Z, Q,
and C). Like this, what are necessary in current complicated software develop-
ment is abstract theories of useful design patterns, software architectures and so
on. Therefore, when both of Abstract Software Engineering as a research �eld
and Precision Software Engineering as an engineering discipline are established,
working software engineers can e�ciently develop highly reliable software, and
then, software engineering can become a truly modern engineering �eld like other
conventional ones, e.g. aircraft engineering.
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